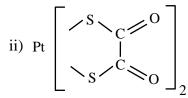
RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2014 SECOND YEAR


Date : 19/12/2014 CHEMISTRY (Honours)

Time: 11 am – 1 pm Paper: III (Gr. C) Full Marks: 25

Unit – I

(Answer <u>any one</u> question) $[1\times13]$ a) $E_{Fe^{+3}/Fe^{+2}}^{o} = 0.77V$ and $E_{I_{2}/2I^{-}}^{o} = 0.54$ Can ferric quantitatively oxidise iodide to iodine? Explain. $[2\frac{1}{2}]$ b) What is 'super acid'? Why it is so named? $[1\frac{1}{2}+2]$ c) Explain red-ox properties of Tl⁺³/Tl⁺ couple at acidic and alkaline condition. Given $E^{o}_{T\ell^{+3}/T\ell^{+}} = 1.28V$ and K_{Sp} of $T\ell(OH)_{3} = 1 \times 10^{-43}$. [3] d) Predict the direction of the following reaction. Explain your answer $AgF_2 + 2I^- = AgI_2 + 2F^-$. [2] Would decrease, increase or have no effect on the acidity or basicity of the solution when zinc amide is added to a liquid ammonia solution of potassium amide and explain by proper acid-base concept. [2] What is transition potential? Can iron (II) to be estimated by dichromate using barium diphenyl 2. amine sulphonate indicator. $E^{\rm o}_{{\rm Fe}^{3+}/{\rm Fe}^{+2}}=0.77V~~E^{\rm o}_{{\rm Cr},{\rm O}_7^{2-}/2{\rm Cr}^{+3}}=1.33V~;~E^{\rm o}_{{\rm Ind}({\rm OX})/{\rm Ind}({\rm Red})}=0.85V$ $[2\frac{1}{2}]$ Given the following standard reduction potentials in acidic medium $E^{o}_{(Ce^{4+}/Ce^{3+})} = 1.55V$; $E^{o}_{(Fe^{3+}/Fe^{2+})} = 0.77V$ Calculate the potential at the equivalence point of the titration of a 25ml $0\cdot 1(N)$ Fe²⁺ solution by a 0.1 (N) solution of Ce⁴⁺. What are the concentrations of the unchanged Fe²⁺ and Ce⁴⁺ at the equivalence point? [2+2]What happens when hydrochloric acid is added separately to HgO and HgS. Explain the course of reaction with concerned acid-base concept. $[1\frac{1}{2}]$ Construct the Frost diagram for manganese from the following latimer diagram and comment on the stability of Mn⁺³ ion in acidic aqueous solution $MnO_{4}^{-} \xrightarrow{0.564 \text{ V}} MnO_{4}^{-} \xrightarrow{2.26 \text{ V}} MnO_{2} \xrightarrow{0.95 \text{ V}} Mn^{3+} \xrightarrow{1.51 \text{ V}} Mn^{2+} \xrightarrow{-1.18 \text{ V}} Mn$ [3] Given pK_a's for some oxy acids of phosphorous. $H_3PO_4: 2\cdot 1$; $H_3PO_3: 1\cdot 8$; $H_3PO_2: 2$; Determine the basicity of the acids. [2] Unit - II (Answer any one question) $[1\times12]$ 3. a) Construct the MO energy level diagram of H₂O molecule and hence predict the nature of bonds [2+1]formed. Explain the flexidentate character of EDTA with example and discuss the effect of pH on it. [3] b) A species of composition CoBr₃, 2H₂O, 4NH₃ shows a molar conductivity 420 ohm⁻¹cm² at infinite dilution. Suggest the probable formulation. [2] A rose-red precipitate is formed when NiSO₄ is treated with dimethyl glyoxime in presence of ammonia. Give its structure. What will happen if the alkalinity of the solution is raised? [2] Which one has greater b.p (°C) H₂O or D₂O? Explain. [2]

- 4. a) What are extrinsic semiconductors? How does variation of doping leads to n— or p—type semiconductors. [3]
 - b) The nitrite ion forms both the complexes $[\text{Co}(\text{NH}_3)_5(\text{ONO})]^{2+}(\text{O-bonded})$ and $[\text{Co}(\text{NH}_3)_5(\text{NO}_2)]^{2+}$ (N-bonded), but the latter is more stable— Explain. [2]
 - c) Due to Frenkel defects, the dielectric constant in the ionic crystals increases. Explain [2]
 - d) Write down the IUPAC names of the following (<u>any one</u>): [1]
 - i) K₂[OsCl₅N]

- e) Why Macrocyclic compounds are more stable than normal chelate complexes? [2]
- e) Suggest why a chelated complex is more stable than a similar nonchelated complex? [2]

____×___